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Abstract. We present a new non-combinatorial interpretation for the fermionic nature of the 
20 dimer problem. The partilion functions of the closed-packed dimer models settled on the 
most general inhomogeneous reetangular, hiangular, and hexagonal lattice nets are obtained as 
fermionic Gaussian integrals. These Gaussian representations provide the analytic results for the 
partition functions and dimer-dimer correlations for a variety of regular lattices, and can also 
be applied to analyse defects. boundary infhences, effects of disorder etc. in dimer models. 

The dimer model is the archetype for many interesting problems in statistical mechanics and 
condensed matter physics. The closed-packed dimer model on a proper rectangular lattice 
was first solved by Kasteleyn [I] and Temperley and Fisher [Z]. Besides its importance 
for the dimer combinatorics itself, this remarkable solution has contributed much to the 
mathematics of the 2D king model and other lattice problems in statistical mechanics 13-51, 
The dimer model has found many physical applications. We mention here the connection 
of the dimer problem on the hexagonal lattice [6] to the commensurate-incommensurate 
phase transitions due to a domain-wall analogy [7,8]. This in turn provides us with a 
solvable model for the Pokrovsky-Talapov transition [9]. A new line of interest arises 
currently from the RVB theory for high-% superconductivity [lo], where the dimer model 
is a structural ingredient used to construct the wavefunction of the antiferromagnetic RVB 
state [ I l l .  The important feature of the ZD dimer problem is its fermionic nature. In 
retrospect, the appearance of a Pfaffian in Kasteleyn’s [ I ,  61 combinatorial analysis already 
suggests the fermionic nature of the problem. The quantum fermion calculus has been 
applied by Fisher [Z] in his version of the combinatorial matrix solution. More recently, 
the combinatorial analysis of the dimer problem in terms of fermionic fields (Grassmann 
variables) has been performed by Samuel [121 and Abanov [13]. The traditional approaches 
of this kind, however, are somewhat complicated even in a purely mathematical aspect, and 
differ significantly, in their spirit, from the methods commonly accepted in quantum field 
theory and condensed matter physics. 

In this paper we present a very simple non-combinatorial interpretation for the fermionic 
nature of the ?D dimer problem based on the integration over Grassmann variables (non- 
quantum fermionic fields) and factorization principles for the density matrix. The approach 
is straightforward, the traditional combinatorial or transfermatrix considerations will not be 
used. The factorization ideas resemble, in general, the idea of the insertion of Dirac’s unity 
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'c la)(  a[ = 1 in transformations in quantum mechanics. The principal point, related to the 
2D nature of the problem, is the consmction of the mirror-ordered factorized representation 
for the dimer density matrix (equation (12)). At this stage we apply the ideas first developed 
in the context of the ?D Ising model [14]. Within this new interpretation, we derive, for the 
first time, the Gaussian fermionic representations for the partition functions for the most 
general inhomogeneous rectangular, hexagonal, and triangular dimer lattices (equations ( 1 3 ,  
(18) and (19)). By a suitable specification of the distribution of the dimer weights, these 
representations provide the exact analytic solutions for the partition functions and the dimer- 
dimer correlations, in all orders, for a variety of regular homogeneous lattices, and may also 
be a good starting point for further studies. 

We present the basic steps of fermionization by an example of a rectangular 
inhomogeneous lattice with a free boundary. Let the lattice sites be numbered by pairs 
of integers mn, with m = 1.2, .  . . , M and n = 1.2,. . . , N running in horizontal and 
vertical directions, respectively. The dimers are objects living on lattice bonds. The given 
bond may be either free or covered by a dimer together with the two adjacent sites. The 
closed-packing restriction means that each lattice site must be covered by one and only one 
dimer; see figure l(a). Let t i :  and tfi be the dimer weights (activities) for horizontal and 
vertical bonds, respectively, as is shown in figure I@). The weight of a free bond is 1. 
For the whole lattice, the Boltzmann weight of a configuration is the product of the bond 
weights. The partition function, Q , arises by summing over the allowed configurations. 
This combinatorial definition for Q can be formalized as follows. With each lattice site 
mn we associate the commuting nil-potent variable qmn, with 
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= 0, and write 

M N  

(1) 

where we assume the free-boundary conditions for the variables: ~ M + I "  = q"+1 = 0. 
The averaging rules for one variable are 

(2) 

with the global q-averaging in (1) being a superposition of the local averaging (2) taken 
over all the sites of a lattice. Evidently, the product of factors 1 +tqq' forming the 'density 
matrix' in (1) produces all possible coverings of a lattice by 'dimer molecules' q I q' . The 
averaging according to the rule (2) just selects the closed-packed configurations. Our goal 
is now to pass from the commuting nil-potent q-variables to the anticommuting Grassmann 
variables. The point is that the Grassmann variables are 'good' variables with many plausible 
properties and we know how to extract numbers from the Grassmann-variable expressions, 
which is not the case for the q-variables. 

We remember that the Grassmann variables are non-quantum fermionic numbers 
purely anticommuting to zero. Given a set of Grassmann variables a , ,  . , . , aN,  we have 
a;aj + aja; = 0, a; = 0. The Berezin's rules of integration over one variable are [15] 

Q = SP n n (1 + C i q m n q m + l n ) ( 1 +  lmnqmnqmn+l) (2) 

(11) m = l n = l  

s p  ( l l ~ m J ~ ~ * l ~ ; n l ~ ~ " l  . . . I  = ~ o l 1 l o l o l o l . . . ~  
( q m n )  

d a j l = O .  (3) J dajaj  = 1 J 
In the multidimensional integral, the differential symbols dal, . . . , daN are again 
anticommuting with each other and with the variables. The basic formulae of the 
Grassmann-variable analysis concern the Gaussian fermionic integrals [15,16]. The 
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Figure 1. ( a )  A particular closed-packed dimer covering on a rectangular lattice. (b)  Local 
enumeration of sites and bonds on a rectangular cell. (c) A fragment of the brick lattice, such 
a lattice is topologically equivalent to the hexagonal lattice. (d) The triangular lattice as a 
generalization of the rectangular one. 

Gaussian integral of the first kind is related to the determinant 

where [ aj, a; ] is a set of completely anticommuting Grassmann variables, the matrix in 
the exponential is arbitrary. The Gaussian integral of the second kind is related to the 
Pfaffian of the associated skew-symmetric matrix: 

N N  
A .  - - A . .  ~ U N  . . . dazdal exp ( 1  ZCai Aijuj) = Pfaff i  s i=l j=1 

I, - ,I , 

The Pfaffian form is some combinatorial polynomial in elements Ai, known in mathematics 
for a long time. The Pfaffian and determinant of the associated skew-symmetric mahix 
are algebraically related det ) * . This relation can be most easily proved 
in terms of the fermionic integrals like (4) and (5) [12]. The linear superpositions of the 
Grassmann variables are again Grassmann variables and it is possible to make a linear 
change of variables in the fermionic integrals. As compared with the rules of the common 
analysis, the only difference is that the Jacobian will now appear in the inverse power 
[ 151. New variables of integration can be introduced, in particular, by means of the Fourier 
substitution (transformation to the momentum space). 

Let it be given only two Grassmann variables a and a*. The elementary Gaussian 
exponential is eioO* = 1 +haa", the series terminates since (aa')' = 0. Making use of the 
basic rules (3), the typical weight factor from (1) can be factorized as follows: 

= ( Pfaff 

1 + tqq' = du*daeaa'(l + taq) (1 +a*q). (6) 

We intend to apply factorization (6) to pass in (1) from the commuting q-variables to the 
anticommuting Grassmann variables. 

s 
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Introducing, for the whole lattice, a set of completely anticommuting Grassmann 
variables [amn, uLn, b,,, b:,,], a pair per bond, we write 

1 +t;Lvmnvm+in = /da:,damneU'""";n (1 +fA:amnvmn)(l + a i n v m C I n )  

where in  the last lines we introduce the abbreviated notation for the arising Grassmann 
factors: 

( 7 4  

while Sp (. . .) stand for the Gaussian averagings Jdu*doe"' (. . .) and !db*dbe**'(. . .). 
The totally commuting local averaging symbols can be gathered in one place, forming the 
global Gaussian averaging. The indices mn in the above Grassmann factors are chosen to 
be equal to the indices of the variables vmn involved in these factors. The idea is to place 
nearby, in the process of fermionization, the four factors A,,,", Akn, B,,, B;" with the 
same variable I,,,,, and to average over v,, in each group of factors independently, thus 
producing a purely ferrnionic representation for Q .  The obstacle to this method is that the 
individual Grassmann factors are neither commuting nor anticommuting with each other. 
It might, therefore, be difficult, in general, to find the four relevant factors nearby. The 
problem of a suitable ordering of the non-commuting Grassmann factors thus arises. In fact, 
though the Grassmann factors themselves are neither commuting nor anticommuting, what 
can really be used in the ordering arrangements is that the doublets presenting the bond 
weights, AmnA:+ln, B,,B:,+l, can be treated as totally commuting objects, if taken 
as a whole, since the non-commuting linear fermionic terms involved in these doublets 
are effectively equal to zero under the sign of the Gaussian averaging, Alternatively, we 
can first place the weight 1 + tqq' into any suitable position among the other Grassmann 
factors, and then we pass to the factorized representation (7). The doublets Am,A;tI and 
Bm.B:,,+l can thus be moved through any product of other Grassmann factors as if they 
were purely commuting, 

In the fermionization process. we will also apply the two ordering principles illustrated 
below by tutorial examples: 

Am. = 1 + fA!!amnvmn A;+,, = 1 + Q;nvmt~n  

Bmn = 1 + tA?bmnVmn E,+I = 1 +b;,Vmntl 

( xO?l ) (XI 4) ( X 2 ? 3  ) (x3y4) = XO (?I XI ) (y2 XZ (y3 x3 IF4 
(xlfl)(X2XZ)(X3?3) = ( X I  ( X 2 ( X ) X ) ) f Z ) i l )  = X]xzx3-?3i221. 

(8 ) 
(9) 

In equation (8) we simply re-read the product by joining together the neighbouring symbols 
with the same indices. In (9) we assume that the doublets ( x j i j )  are totally commuting with 
the individual x-factors, while the separable factors themselves may be non-commuting, and 
separate proper and bar factors. 

With this notes, we proceed to the global factorization of the density matrix. In 
transformations from (IO) to (12) we omit, for brevity, the sign of the Gaussian averaging 
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arising by factorization. First, we put one commuting weight (7) between the two Grassmann 
factors of another, also cf (9), and write 

(1 + t m n  (Cl qmn qm+ln)(l + E ? m n V m n + i ) =  Bm,A,,A:+inBL,+i. (10) 

Next, we multiply the weights (10) over m,  for a given fixed n, applying the rules (9) and 
(8), respectively: 

where the arrows indicate the direction of increasing in in the ordered products. In the 
final expression we put A;,,, = 1, since qM+]n = 0, and introduced, formally, the lacking 
symbols A;, = 1 + with U;,, = 0, cf (7), so that in fact A;, = 1. Now we multiply 
the products (11) over n ,  with n increasing from left to right, applying the rule (8) with 
respect to index n: 

In the final expression we again annihilate the factors B i N + ]  = 1 ,  since ? m ~ + l =  0, 
and create the lacking factors B;, = 1, where b;,, = 0. Being forced in (11) 
to separate the mn and mn + 1 factors in order to apply the linear arrangement (8) 
with respect to m, in (12) we try to restore, whenever possible, the normal situation 
by combining the factors with equal mn. All the local weights (6) are already 
involved in (12). For the 'density matrix' from (1) we thus obtained a special 'mirror- 
factorized' representation (12). In this representation the q-variables can be easily 
eliminated. 

The ?-averaging reduces to the averaging over individual variables qmmn at the junction 
of the m-products in (12) and yields, finally, the product of the linear forms in Grassmann 
variables: 

L,, = t:;~,,, + t2,bmn +U;-]" -t (-1)'"''bin-I . (13) 

First, we fix n and average at the junction the complete product B~,A;,,B,,A,, = 
1 + 'I,,, (t~'&zm0 + tfib,, + a;-in + bLn-]) + . . . with m = 1 ,  given n, with the result 
correctly presented by (13) at m = I .  Then we move the L,,-form from the junction to the 
left through the remaining product of BL,, factors with given n. At the junction we then 
find again the complete product of four neighbouring factors with equal index mn, m = 2 
and repeat the procedure for m = 2, and then for m = 3 , 4 , 5 , .  . . , M , for given n, and 
all over again for other values of n . The translation of the linear fermionic form L,, to 
the left is just responsible for the factor (-l)"'+I occurring in (13). This sign factor arises 
because the variables b i n ,  involved in the BLe factors, change their sign each time we 
move L,, from the junction to the left. 

The q-variables being completely eliminated, we find the dimer partition function 
as a product of the L,, forms under the sign of the Gaussian averaging coming from 
factorization. In this already purely fermionic expression, we can exponentiate L,, making 
use of the identity L,. = 1 dc,, exp (cmn L,,), where cmn are some auxiliary Grassmann 
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variables. The partition function then appears as a Gaussian integral: 

R H q n  and V N Plechko 

a&=b;,=O. 

(14) 

+ (t:2amn + ti?bmn + (-l)'"+'b:n-l ) c,,] 

The above integral can in turn be simplified by integrating out the a-, b-fields by means 
of identities like Jda' da exp { aa* + aL' + u*L"] = exp ( L"L'] , where L', L" are some 
linear forms in c-variables. Eliminating the a-, b-fields, we come to the final expression: 

with the free-boundary conditions for fermions: CM+(,, = 0, c m ~ + l  = 0. The partition 
function is now expressed as a simple fermionic Gaussian integral. This representation is 
exact and completely equivalent to that of (1). In field-theoretical language, the fermionic 
form in the exponential is called the fermionic action. The action in (15) is quadratic, 
we thus deal with a free-fennion field theory on a lattice. As is well known from the 
quantum field theory and solid state physics, the free-fermion representation of a model is 
in essence equivalent to its exact solution. In the given case, if we assume that or another 
regular distribution of the dimer weights, the integral can be performed analytically (also 
see (4) and (5)). The key point in the above derivation is the mirror-ordered factorized 
representation for the density matrix (12) which makes possible the elimination of the q- 
variables. However, despite a simple solution in the ZD case exposed above, the ordering 
problem for Grassmann factors is, in general, a non-trivial one. In particular, this problem 
can hardly be solved for the 3D dimer lattice, the 3D dimer problem remains unsolved, the 
same holds for the 3D Ising model. The gap between two and three dimensions is in fact 
large. 

It is important that the free-fermion representation for the partition function (15) is 
derived for the most general inhomogeneous distribution of the dimer weights. This can be 
used for at least three purposes: (i) one can deduce the fermionic expressions for the dimer- 
dimer correlation functions of any order and orientation simply by differentiating (15) with 
respect to the activities &'A, f;?, (i) one can analyse the disordered problem, the influence 
of defects and impurities, and (iii) one can study the dimer problem on regular lattices by 
specifying the appropriate periodic distribution of the activities in (15). As the simplest 
illustration for the last point, we note that (15) contains all the information about the brick 
lattice (see figure l(c)) which is equivalent to the hexagonal lattice neglecting the boundary 
effects. The fermionic representation for Q for the inhomogeneous brick-hexagonal lattice 
arises by making some of the vertical weights #,$? zero in accordance with figure l(c). It is 
interesting that the homogeneous hexagonal lattice exhibits an exotic phase transition [6,8], 
as distinct from the homogeneous rectangular lattice with no phase transition 11.21. The 
fermionic representations for a variety of more complicated regular lattices also follow from 

For actual calculations for homogeneous lattices, the standard device is to pass to the 
momentum space (Fourier substitution for fermions). For instance, for the homogeneous 
rectangular lattice, #:; = t l ,  = t2. the fermionic action in (15) is put into block-diagonal 

(15). 
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The partition function then factorizes into the product of similar integrals over the groups of 
variables: cpq, c ~ + l - ~ ~ ,  c ~ N + I - ~ ,  C M + I - p N + l - q .  For both M and N even, the evaluation 
of the integral gives 

np +4t22cos2- Q = n n  [4t~cosz- M + 1  N + l  Rq 1 MI2 NI2 

p-1 q=1 

in accordance with the combinatorial result [l ,  21. (Also see the analogous momentum-space 
calculations for the XI king models in [12,16,18].) 

The fermionization can also be performed for the toroidal (periodic in both directions) 
boundary conditions. We refer here to the experience with the ZD Ising model on a torus 
[17]. The final result is 

$[GI--  f GI-+ +GI +- - GI++ I (18) Q loms 

where G is the fermionic integral given in (15), but now with the four combinations of the 
periodic-aperiodic closing conditions for fermions: 

(* I h) ( C U + l n  f c l n  I C m N + I  = f c m l ) .  

The original partition function Q in (18) is that of ( 1 )  with qM+tn = ql. and V ~ N + I  = vml. 
The characteristic expansion of Q into the sum of four integrals, also known for the 2D 
king model, is in fact a purely fermionic effect due to the transposition of the produce 
of the boundary Grassmann factors necessary in this case, cf [17]. The analytic result 
[l]  for the homogeneous rectangular torus follows from (18) by Fourier substitution. In 
the given case one has to expand c,, over the Fourier exponentials with integer momenta 
for periodic directions and with half-integer momenta for aperiodic directions. The Fourier 
transformation is in general simpler for the toroidal integrals (18) than for the free boundary 
case (15). (We have also checked that the solution for the hexagonal lattice with Kasteleyn's 
transition follows from (18), and calculated some other partition functions, and some 
correlations.) 

The Gaussian fermionic representations can also be derived for the triangular 
inhomogeneous lattice. The triangular lattice can be viewed as a rectangular one with 
a diagonal added in each lattice cell; see figure l(d). Respectively, we must add diagonal 
factors 1 + t,$!qmnqm+l n+l in (1). For the free boundary, the partition function is then given 
by an integral like (15), but now with an extended fermionic action in the exponential 

U N  

~ ( ~ ) = C c [ t ; ; c m + , r z c m n  + ( - l ) m + l ~ ~ ~ c m , * ~ c m , + ( - l ) m f ~ ~ m + l " + I ~ m , ) ] .  (19) 
m=l n=l 

Respectively, for the toroidal conditions the triangular partition function for an 
inhomogeneous lattice is given by (18) where the integrals are to be taken with the extended 
action (19). 

In conclusion, we have reformulated the closed-packed dimer problem on 
inhomogeneous 2D lattices as free-fermion field theories. The generalized inhomogeneous 
partition functions are obtained in the form of Gaussian integrals over Grassmann variables. 
This puts the dimer model, which is originally a combinatorial problem, closer to the typical 
models of quantum statistics and solid state physics. The approach is flexible enough to 
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deal with non-standard and complicated lattices, different boundary conditions, local defects 
and perturbations, etc. For regular lattices, the Gaussian representations of this kind provide 
the analytic results for thermodynamic functions and correlations. 
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